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Vaccine refusal can lead to renewed outbreaks of previously
eliminated diseases and even delay global eradication. Vaccinating
decisions exemplify a complex, coupled system where vaccinating
behavior and disease dynamics influence one another. Such
systems often exhibit critical phenomena—special dynamics close
to a tipping point leading to a new dynamical regime. For instance,
critical slowing down (declining rate of recovery from small per-
turbations) may emerge as a tipping point is approached. Here, we
collected and geocoded tweets about measles–mumps–rubella
vaccine and classified their sentiment using machine-learning al-
gorithms. We also extracted data on measles-related Google
searches. We find critical slowing down in the data at the level
of California and the United States in the years before and after
the 2014–2015 Disneyland, California measles outbreak. Critical
slowing down starts growing appreciably several years before
the Disneyland outbreak as vaccine uptake declines and the pop-
ulation approaches the tipping point. However, due to the adap-
tive nature of coupled behavior–disease systems, the population
responds to the outbreak by moving away from the tipping point,
causing “critical speeding up” whereby resilience to perturbations
increases. A mathematical model of measles transmission and vac-
cine sentiment predicts the same qualitative patterns in the neigh-
borhood of a tipping point to greatly reduced vaccine uptake and
large epidemics. These results support the hypothesis that popu-
lation vaccinating behavior near the disease elimination threshold
is a critical phenomenon. Developing new analytical tools to de-
tect these patterns in digital social data might help us identify
populations at heightened risk of widespread vaccine refusal.
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In recent decades, vaccine refusal has contributed to the re-
surgence of measles and pertussis and significantly delayed the

global eradication of polio (1, 2). For instance, the 2014–
2015 measles outbreak in Disneyland, California was preceded
by declining kindergarten measles–mumps–rubella (MMR) vac-
cine coverage in California between 2010 and 2014 (3) (Fig. 1A).
Vaccine compliance at school entry fell to 70–90% in many cases
and sometimes even lower in some Los Angeles schools (3).
Inadequate vaccine compliance appears to have played a role in
the outbreak (4), contributing to a significant peak in California
measles case notifications in late 2014 and early 2015 (5) (Fig.
1A). The outbreak garnered significant public interest, causing a
large spike in both US-geocoded tweets regarding measles (Fig.
1B) and Google Internet searches in California for “MMR” and
“measles” (Fig. 1C) as reports of cases began to flow in. Amid
the resulting public outcry, the California legislature began tak-
ing steps to disallow nonmedical exemptions (6–8), although
statewide MMR vaccine uptake began to recover before these
policy changes went into effect (3) (Fig. 1A).
The changes in vaccinating behavior before and after the

Disneyland measles outbreak are consistent with a coupled be-
havior–disease dynamic in which vaccinating decisions and dis-
ease dynamics influence one another in a nonlinear feedback
loop. The mathematical modeling of coupled behavior–disease
dynamics is growing rapidly (9–12), although relatively little at-
tention has been devoted to critical phenomena in such systems.

The theory of critical transitions (tipping points) and their early
warning signals may help public health officials anticipate when
and where resistance to vaccination might develop and intensify.
A critical transition occurs when a complex system shifts abruptly
to a strongly contrasting state as an external driver moves the
system past a bifurcation point (13, 14). These shifts may exhibit
characteristic early warning signals as a consequence of critical
slowing down (CSD), in which a declining rate of recovery from
small perturbations causes dynamics to become more variable.
CSD can be detected by changes in indicators such the variance,
lag-1 autocorrelation (AC), and coefficient of variation in high-
resolution time series of state variables (13, 14).
Social norms tend to reinforce currently accepted behavior

and thus promote status quo practices in populations (15–17).
However, individuals also make vaccinating decisions based on
the perceived risks of the vaccine and the diseases they prevent
(15). Here, we hypothesize that coupled behavior–disease sys-
tems exhibit a tipping point arising from interactions between
social norms, perceived vaccine risk, and perceived disease risks.
Specifically, we investigate the effects of risk perception in terms
of the ratio of the magnitude of perceived vaccine risk to the
magnitude of perceived risk of disease complications (we will call
this “relative vaccine risk” for short). Rising public concern
about potential vaccine complications can cause the relative
vaccine risk to grow to a tipping point where social norms in
support of a status quo of high vaccine acceptance can no longer
prevent a drop in provaccine sentiment. If the population moves
beyond this tipping point, a decline in provaccine sentiment
causes fewer people to seek vaccination and herd immunity
breaks down, enabling outbreaks of various sizes. However,
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before the tipping point is reached, CSD causes the variance, lag-
1 AC, and coefficient of variation of time series of population
sentiment toward the vaccine to increase. Importantly, the in-
crease in these three indicators should be noticeable long before
any significant change is obvious in the raw time series of pop-
ulation sentiment toward the vaccine. In other words, they pro-
vide an early warning signal of a potential tipping point.
However, coupled behavior–disease systems are complex adap-

tive systems, which introduces an important twist to our hypothesis.
The relative vaccine risk is not simply an external driver pushing
the system past a tipping point. It also responds to changes in in-
fection prevalence. When an outbreak occurs, the relative vaccine
risk drops. Hence, a critical transition can be avoided if the pop-
ulation responds to the small outbreaks that begin to occur near a
tipping point (18). We hypothesize that these dynamics could lead
to CSD before the outbreak followed by “critical speeding up”
(improving resilience to perturbations) after the outbreak as the
population recedes from the tipping point. Although CSD in a
time series of population vaccine sentiment will not necessarily
predict whether the population will pull back from the critical
transition or go through the transition, it can at least tell us that the
population is getting dangerously close to a tipping point.
In this article, we report evidence for CSD in sentiment-

classified tweets and in Google searches about measles before
the Disneyland measles outbreak, followed by critical speeding
up afterward. These empirical digital signals show patterns that
match those exhibited by a mathematical model of the coupled
dynamics of measles transmission and vaccine sentiment that has

been previously tested against case notification and vaccine up-
take data for measles and pertussis (19–21). Hence, these digital
signals could be used as an early warning signal of tipping points
in coupled behavior–disease systems.

Results
Model. The mathematical model captures the interplay between
disease dynamics, social learning, social norms, and perceived
risk:

dS
dt

= μð1− xÞ− μS− βSI, [1]

dI
dt

=−μI + βSI − γI, [2]

dx
dt

= κxð1− xÞð−ωðtÞ+ IðtÞ+ δð2x− 1ÞÞ, [3]

where S is the proportion of susceptible individuals; I is the pro-
portion of infected individuals, x is the proportion of individuals
with provaccine sentiment; μ is the per capita birth and death
rate, β is the transmission rate, γ is the rate of recovery from
infection, κ is the social learning rate, δ is the strength of social
norms, and ω(t) is the relative vaccine risk. We note that Eq. 3
has been rescaled and that the proportion of recovered individ-
uals R is simply 1 − S − I. From Eq. 1, vaccine uptake is given by
x, and thus all provaccine individuals choose vaccination, while
the remainder 1 − x of antivaccinators avoid it. Provaccine
sentiment becomes more widespread when infection prevalence
I(t) is higher or when vaccine risk ω(t) is lower. Social norms
reinforce whichever sentiment—provaccine or antivaccine—is
more common.
We chose a simple model because CSD only requires that the

eigenvalue go to zero at the bifurcation point. This is universal to
many types of local bifurcations in both simple and complex
models (14). Hence, a broad class of more complicated models
should predict the same patterns. (For instance, it is possible to
show that including a third category of individuals with neutral
sentiment also exhibits CSD.) Additional details about model
derivation, parameterization, and simulation appear in SI Ap-
pendix, section S3.
In the case of fixed vaccine risk, ω(t) = ω, the model has

multiple stable equilibria (19). The equilibrium (S, I, x) = (0, 0,
1) is of particular interest because it corresponds to a disease-
free state with full vaccine uptake that is stable when relative
vaccine risk is less than the strength of social norms (ω < δ).
However, as ω increases past δ, the equilibrium is destabilized
through a critical transition at ω = δ and the population con-
verges to a state of endemic infection and no vaccine uptake
(Fig. 2A). At other parameter values, a drop to endemic in-
fection and intermediate vaccine coverage is also possible.
To study CSD, the model was converted to a stochastic model

by including an additive Wiener process (SI Appendix, section
S3). When ω(t) increases linearly until it crosses the tipping point
(Fig. 2B), vaccine uptake collapses and an epidemic occurs (Fig.
2C). However, before this happens, the variance, lag-1 AC, and
coefficient of variation of the time series of provaccine sentiment
(x) increase as the critical transition is approached (Fig. 2D). The
increase begins long before any significant change is obvious in
the raw x time series, and hence they provide an early warning
signal of the critical transition. We will show later in Results that
the proportion of individuals with antivaccine sentiment (1 − x)
also exhibits CSD.

Approach. In the next subsection, we compare the temporal
evolution of the three indicators in digital social data before and
after the Disneyland measles outbreak to the model predictions
when the relative vaccine risk ω(t) increases linearly to the

A

B

C

Fig. 1. Interactions between disease spread, vaccine uptake, and online
activity before, during, and after the 2014–2015 Disneyland, California
measles outbreak. (A) Kindergarten MMR vaccine uptake (black; note ver-
tical scale) and measles case notifications in California (red): year in hori-
zontal axis for vaccine uptake corresponds to the ending calendar year of
the corresponding academic year (e.g., 2016 means 2015–2016 academic
year). Case notifications in 2016 go only to November 18. Most 2014 cases
occurred at the end of the year. (B) Number of US geocoded tweets for
measles-relevant search terms, 2011–2016, with a sharp spike in early
2015 corresponding to Disneyland measles outbreak. (C) GT Internet search
index for MMR (blue) or measles (orange) in California, 2011–2016, with a
sharp spike in early 2015 corresponding to the Disneyland measles outbreak.
Shaded region in B and C indicates outbreak time period. See SI Appendix,
sections S1 and S2 for details on search terms, data sources, and data
extraction.
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tipping point at ω = δ and then decreases linearly back to a
baseline level (SI Appendix, section S3)—this is intended as a
first approximation to how CSD might occur before the out-
break, followed by critical speeding up after.
We treated CSD in the time series of number of tweets with

provaccine (respectively, antivaccine) sentiment as a proxy for CSD
in the time series of the proportion of individuals with provaccine
(respectively, antivaccine) sentiment in the general population (x
and 1 − x; note that x is also vaccine uptake in the model). This is
supported by research showing a correlation between sentiment of
tweets on influenza vaccine and actual influenza vaccine uptake
(22), and between discussion of individuals’ health status in social
media and their actual health status (23). We also show that CSD in
total tweets of a given sentiment is a good proxy for CSD in pop-
ulation vaccine sentiment and uptake in a broad class of expanded
models in which a critical transition in abundance of individuals
with provaccine or antivaccine sentiment drives an observable
change in the number of provaccine or antivaccine tweets in online
social media (SI Appendix, section S6).
We analyzed three empirical datasets. The US GPS dataset

included measles-related tweets with latitude and longitude co-
ordinates in the United States. The much larger California and
US Location Field datasets included measles-related tweets from

users indicating a California or US location in their user location
field. We used a machine-learning algorithm to classify tweet
sentiment in the Location Field datasets into provaccine, vac-
cine, or other. The US GPS dataset sentiment was classified
using Amazon Mechanical Turk (Methods).

Provaccine Tweets. The time series of provaccine tweets shows ev-
idence for CSD in the years before the Disneyland outbreak (Fig.
3). In the California Location Field dataset, we observe that the
variance (Fig. 3C), lag-1 AC (Fig. 3G), and coefficient of variation
(Fig. 3K) all increase significantly before the outbreak. The increase
in these indicators begins well before the rolling window used for
local temporal averaging reaches the time of the outbreak. Hence,
the analysis reveals a long-term trend in indicators beginning several
years before the outbreak. We interpret this trend as the system’s
growing variability as the population approaches a critical transition
to widespread reductions in vaccine uptake (Fig. 2).
After the outbreak, however, California responds by receding

from the critical transition, rather than being pushed past it to a
new dynamical regime of endemic infection and significantly re-
duced vaccine uptake [as occurred for whole-cell pertussis vacci-
nation in the United Kingdom, for instance (21)]. This is indicated
by a decline in all three indicators after the outbreak (Fig. 3 C, G,
and K), as well as by a reversal of the declining trend in vaccine
coverage (Fig. 1C). The system’s resilience to perturbations im-
proves as the population recedes from the tipping point.
The decrease in the indicators after the outbreak is also a

useful test of whether underlying changes in the total number of
Twitter users over the study time window could be driving the
observed increase in the indicators before the outbreak. If this
were the case, we would not expect to see a decline in the in-
dicators or the number of raw tweets after the outbreak.
The patterns are similar but not as consistent for the datasets

from the much larger US population, as expected. Variance in-
creases for both US GPS and US Location Field datasets (Fig. 3 A
and B), but lag-1 AC increases only for the US GPS dataset (Fig.
3E), and the coefficient of variance increases only for the US Lo-
cation Field dataset (Fig. 3J). After the outbreak, the same indi-
cators in the same datasets decline (Fig. 3 A, B, E, and J), while the
indicator increases in two of the subpanels (Fig. 3 I and F).
The mathematical model shows the same general trends, in-

cluding a stronger signal for variance than for lag-1 AC or co-
efficient of variation. The three indicators grow and then decline
on average in a pattern similar to that observed in the data, as
the perceived relative risk ω(t) approaches and then recedes
from the tipping point (Fig. 3 D, H, and I). The relative mag-
nitude of change in the indicators is also similar in model and
data: changes in variance are largest, followed by coefficient of
variation, followed in turn by lag-1 AC. In the model, only 66%,
63%, and 67% of stochastic realizations exhibit an increase fol-
lowed by a decrease in the Kendall tau coefficient for variance,
lag-1 AC, and coefficient of variation, respectively.

Antivaccine Tweets. Similar trends are observed for antivaccine
tweets (Fig. 4), with a surprising exception. As before, the in-
creasing and then decreasing trend in variance is strongest in
both model and the three datasets (Fig. 4 A–D). However, using
Kendall tau values as the criterion, lag-1 AC increases before the
outbreak in only one of the three datasets (the US GPS dataset;
Fig. 4E) and decreases after the outbreak in only two of the
datasets (Fig. 4 E and G). Trends in lag-1 AC in the model are
correspondingly weak, with many stochastic realizations failing
to exhibit the increase and decrease (Fig. 4H).
Surprisingly, the coefficient of variation decreases consistently

over most of the preoutbreak time period in all three datasets
(Fig. 4 I–K). The model also exhibits this inversion (Fig. 4L),
with a decrease in the indicator as the tipping point is
approached and an increase as the population recedes from it,
on average and in 59% of the stochastic realizations (Fig. 4L).
Hence the datasets show a postoutbreak decrease as well, and
not all preoutbreak Kendall tau values are negative at the 5%

A

B
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Fig. 2. Coupled behavior–disease model shows early warning signals as
perceived risk increases toward a critical transition. Green line indicates lo-
cation/time of critical transition in all panels. (A) Bifurcation diagram of
vaccine uptake showing a critical transition from full to zero vaccine uptake
when perceived relative risk (ω) exceeds social norm strength (δ) (solid lines
are stable branches; dashed are unstable). (B) ω (solid line) increasing linearly
past critical transition at ω = δ. (C) Vaccine uptake (black) and infection
prevalence (red) as ω increases as in B. (D) Variance (red), lag-1 AC (blue), and
coefficient of variation (black) for the time series in C (mean values at each
time point across 500 realizations). Methodological details appear in
Methods and SI Appendix, sections S3 and S4.
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significance level if the time just before the Disneyland outbreak is
included. The decline in the coefficient of variation before the
tipping point for antivaccine but not provaccine sentiment occurs
because the statistic divides the SD by the mean. The mean number
of nonvaccinators increases from a small value as the tipping point
is approached, while the mean number of vaccinators decreases.

Google Trends. Google Trends (GT) is increasingly used in social
science and behavioral research (24) and the study of infectious
diseases (25, 26). Our search terms did not permit an analysis of
sentiment, but previous research indicates that salient and con-
troversial issues generate higher search volumes (27–29), including
a study finding a significant inverse correlation between MMR
vaccination coverage and Internet search activity, tweets, and
Facebook posts (28). If we assume salient and controversial issues
are ones on which population opinion is more divided, we can
study CSD in the GT Internet search index concerning measles-
related searches. These data are also consistent with critical dy-
namics near a tipping point. The GT data at the national and state
levels generally show the same pattern as the Twitter data, with a
rise in indicators before the outbreak and a decline afterward (Fig.
5). Trends are stronger at state than national levels, and for MMR
rather than measles searches, which may reflect the greater volume
of GT data on MMR than measles (Fig. 1B).

Sensitivity Analyses. We generated Figs. 3 and 4 using weekly
instead of daily bins. For provaccine tweets (SI Appendix, Fig.
S1), the variance always increases and then decreases, similar to
the daily data. Lag-1 AC shows no trend or tends to decline
before the tipping point. However, lag-1 AC measures changes in

memory, and this is to be expected in a system where memory is
short-lived: the life span of a typical online social media news
item is less than 24 h (30), suggesting daily or subdaily granu-
larity may be required to detect changes in lag-1 AC. The co-
efficient of variation exhibits a statistically significant increase
and decrease before and after the outbreak. Most of these pat-
terns are repeated in the analysis of antivaccine tweets using
weekly bins (SI Appendix, Fig. S2). Results were also qualitatively
unchanged when changing the rolling window width used for
temporal averaging (SI Appendix, Figs. S3–S11).
We analyzed an extended model that includes seasonal varia-

tion in the transmission rate and an Erlang-distributed infectious
period, both of which are known to influence disease dynamics
(31, 32). We found that the indicator trends were unaffected (SI
Appendix, Fig. S12). Through a probabilistic sensitivity analysis, we
found that results are qualitatively unchanged across a broad
range of parameter values (SI Appendix, Fig. S13). To study when
happens when the relative vaccine risk responds to infection in-
cidence, we simulated a variant model where ω(t) = a + bI(t). This
variant exhibited growth and decline in the indicators before and
after outbreaks, similar to Figs. 3–5 (SI Appendix, Figs. S14–S16).
To rule out that the observed increase and decrease in the indi-
cators can also happen around ordinary (noncritical) outbreaks,
we simulated the model at a fixed value of ω far from the critical
point. We found that all indicators were flat both before and after
noncritical outbreaks (SI Appendix, Fig. S17).

Discussion
This article presents evidence that coupled behavior–disease
dynamics near the disease elimination threshold is a critical

A B C D
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I J K L

Fig. 3. CSD provaccine tweets before and after
Disneyland measles outbreak. (A–D) Variance, (E–H)
lag-1 AC, and (I–L) coefficient of variation for (A, E,
and I) US GPS, (B, F, and J) US Location Field, (C, G,
and K) California Location Field data, and (D, H, and
l) model. The residual time series was used for vari-
ance and lag-1 AC. Kendall tau rank correlation co-
efficients are displayed before (regular font) and
after (italic) the Disneyland peak with P values
denoted by <. Window width used to compute roll-
ing averages is indicated by line interval. Shaded
region indicates outbreak time period. Model panels
show indicators averaged across 500 stochastic
model realizations (black), 2 SDs (shaded), and
10 example realizations (colored lines). See Methods
and SI Appendix, sections S3–S5 for details.
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Fig. 4. CSD in antivaccine tweets before and after
Disneyland measles outbreak. (A–D) Variance, (E–H)
lag-1 AC, and (I–L) coefficient of variation for (A, E,
and I) US GPS, (B, F, and J) US Location Field, (C, G,
and K) California Location Field data, and (D, H, and
I) model. The residual time series was used for vari-
ance and lag-1 AC. Kendall tau rank correlation co-
efficients are displayed before (regular font) and
after (italic) the Disneyland peak with P values
denoted by <. Window width used to compute roll-
ing averages is indicated by line interval. Shaded
region indicates outbreak time period. Model panels
show indicators averaged across 500 stochastic
model realizations (black), 2 SDs (shaded), and
10 example realizations (colored lines). See Methods
and SI Appendix, sections S3–S5 for details.
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phenomenon. We analyzed tweets and Google searches and
showed how the patterns in the empirical data matched those
exhibited by a mathematical model of coupled dynamics of
measles transmission and vaccine sentiment and uptake. The
three indicators—variance, lag-1 AC, and coefficient of variance—
tended to increase before the Disneyland outbreak due to CSD, and
then decrease after the outbreak due to critical speeding up (with
the unexpected exception of the coefficient of variation in anti-
vaccinators where the trend was inverted). Our model predicts
the same trends in a population that approaches but then recedes
from a tipping point.
The variance indicator showed the most robust trends. How-

ever, the coefficient of variation has the advantage that it in-
herently adjusts for changes in the mean number of tweets, and
therefore does not require further processing of the data through
computing a residual time series, as required for variance and
lag-1 AC. The lag-1 AC tests for changes in system memory (13).
This indicator often—but not always—showed the expected
trends in our data, and trends were not as strong under weekly
binning. We speculate this is either because memory is too short-
lived in online social media for changes to be detected in data
with daily or weekly granularity, or due to the presence of higher-
order autoregressive processes that cannot be detected by lag-1
AC (33, 34).
The Disneyland outbreak was small and the response in

population vaccine uptake rapid compared with other episodes
of vaccine refusal where populations appear to have crossed a
threshold into a regime of endemic infection and significantly
reduced population-wide vaccine coverage. This latter scenario
occurred for MMR vaccine in England and Wales in the 1990s
and 2000s (80% minimum coverage) (21); whole-cell pertussis
vaccine in England and Wales in the 1970s (30% minimum
coverage) (21); and oral polio vaccine in northern Nigeria in
2003–2004 (1). In recent years, measles outbreaks larger than the
Disneyland outbreak have occurred in many undervaccinated
European populations (35). The social media response to the
Disneyland outbreak was enormous considering the relatively
small size of the outbreak. We speculate this was because the
outbreak was the largest in California in many years and it
started in a major tourist destination.
A limitation of our model is that it does not account for spatial

clustering. This is a key aspect given the presence of clusters of
nonvaccinators during the Disneyland measles outbreak (3), and
it presents an opportunity for further research given the impor-
tance of networks in both infection transmission and strategic
interactions (36, 37). The growth of clusters of nonvaccinators is
not necessarily a competing hypothesis but rather could repre-
sent the spatial manifestation of critical dynamics. Spatially ex-
plicit models of behavioral dynamics in related systems develop
clusters of individuals with homogeneous opinions as the pop-
ulation starts to “bubble” near a critical phase transition (38).

CSD near a phase transition can manifest in similar ways in both
spatial and temporal indicators because the underlying process is
similar. Hence, the growing clusters of unvaccinated individuals
observed before the Disneyland measles outbreak may signify
bubbling near a critical phase transition. This hypothesis could
be tested through further research on critical transitions in social
networks of Twitter users. We also note that spatiotemporal
analysis may take advantage of different and potentially better
indicators than purely temporal analysis (39). More research is
needed to better understand the informational content of the
indicators in spatially structured populations and thereby dis-
tinguish qualitatively different outcomes, such as a quick and
effective population response versus a protracted period of re-
duced vaccine coverage and endemic infection. Such analysis
could incorporate vaccine uptake data if it has good spatial and
temporal resolution (3).
A second limitation is our use of CSD in the number of

sentiment-classified tweets as a proxy for CSD in vaccine senti-
ment and uptake in the general population. This assumption
could be relaxed by using more detailed models that include a
submodel for online social media activity that accounts for how
different users generate differing numbers of tweets and how
online social media activity interacts with social processes in the
general population.
Our empirical results are largely consistent with our model

predictions but cannot definitively establish causality. Future
research could evaluate out-of-sample model predictions and
consider the relationship between contemporaneous indicators
of vaccine sentiment, such as tweets and search data, and ob-
served vaccine uptake. It would also be valuable to consider
other events that might affect sentiment dynamics near tipping
points and to evaluate whether the significant population re-
sponse to the Disneyland outbreak depended on its extensive
media coverage.
Still, these results suggest that population vaccinating behavior

near the elimination threshold can be characterized as a critical
phenomenon near a tipping point in a coupled behavior–disease
system. Our findings highlight the value of using digital social
data to identify early warning signals of critical dynamics in
adaptive behavior–disease systems and socioecological systems
more generally (18). They also demonstrate the value of using
dynamical systems theory in data science. The theory of critical
phenomena in complex systems may shed light on other study
systems represented in very large social media datasets.

Methods
Twitter Data. For the US GPS dataset, we obtained 27,906 measles-related
tweets from March 2, 2011, to October 9, 2016, with GPS coordinates in the
United States. We used Amazon Mechanical Turk to classify the sentiment of
these tweets into 10,926 “provaccine,” 2,136 “antivaccine,” and 14,844 “other”
categories. A tweet was defined as provaccine (respectively, anti-vaccine) if

A B C D

E F G H

I J K L

Fig. 5. CSD in GT search index before and after
Disneyland measles outbreak. (A–D) Variance, (E–H)
lag-1 AC, and (I–L) coefficient of variation for (A, E,
and I) US searches for measles, (B, F, and J) US
searches for MMR, (C, G, and K) California searches
for measles, and (D, H, and L) California searches for
MMR. The residual time series was used for variance
and lag-1 AC. Kendall tau rank correlation coeffi-
cients are displayed before (regular font) and after
(italic) the Disneyland peak with P values denoted
by <. Window width used to compute rolling aver-
ages is indicated by line interval. Shaded region in-
dicates outbreak time period. See Methods and SI
Appendix, section S4 for details.
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the tweet content suggested the tweeter had a positive (respectively, negative)
sentiment toward vaccines. This included any information about their feelings
or opinions toward vaccines or the diseases they prevent. A tweet was placed in
other if it was neither provaccine nor antivaccine, for instance, because it was
irrelevant, ambiguous, or if the sentiment of the tweeter could not be clearly
ascertained. Baseline analysis used daily bins. Additional details appear in SI
Appendix, sections S2 and S5. Over the same time period, 11,685,264 tweets
had information in the user location field. To generate the Location Field
datasets, these tweets were geotagged using a modified version of the Geodict
library and classified into pro-vaccine, anti-vaccine, and other using a linear
support vector machine. The classifier obtained precision scores of 80%, 90%,
and 79%, and recall scores of 83%, 82%, and 82% for antivaccine, other, and
provaccine tweets, respectively (F1 scores: 81%, 86%, and 80%). The process
identified 660,477 antivaccine, 883,570 provaccine, and 483,636 other tweets in
the US dataset, and 101,683 antivaccine, 112,741 provaccine, and 59,030 other
tweets in the California dataset. Baseline analysis used daily bins. Additional
details including references appear in SI Appendix, sections S2 and S5. Data are
available in Datasets S1–S3.

GT Data Extraction. We analyzed GT search data for January 2011 to De-
cember 2015 using the gtrendsR (40) package. Unfortunately, the longest
range of day-level query data Google provides is 3 months, which generates
results in the arbitrary units of GT data that are not comparable between
searches. (GT returns an estimate of the relative prevalence of searches
matching the query for the time period and geography in question when
the prevalence of the search term or terms exceeds some unspecified
threshold.) As a result, we ran multiple day-level queries for each search

(e.g., US measles, US MMR, California measles, California MMR) to cover the
entire time period and then stacked the resulting data. We then ran a single
corresponding week-level query for each search and used this to calculate an
adjustment factor (specifically, we multiply each day-level value by the
week-level query result divided by the week-level average from the daily
data). This adjustment accounts for differences in the relative prevalence of
searches over time in the stacked day-level data (41, 42).

CSD Indicators. To adjust for long-term changes in themean number of tweets,
we used the residual time series of sentiment-classified tweets for lag-1 AC and
variance, generated by subtracting the raw time series from a detrended time
series. This is not necessary for the coefficient of variation since it already adjusts
for long-term changes in number of tweets. We also removed the Disneyland
social media peak (taken as running from January 22 to February 14 based on
the US GPS dataset) to avoid issues with nonstationarity caused by the Dis-
neyland outlier, and also because our focus is on CSD in the time before and
after the outbreak. The methodology of computing indicators for the model
was otherwise identical to that for the tweets andGTdata.Weused theKendall
tau rank correlation to quantify indicator trends (13), although we note that
this statistic does not account for the size of increases or decreases over pre-
vious time points. Additional details appear in SI Appendix, section S4.
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